马上注册,结识高手,享用更多资源,轻松玩转三维网社区。
您需要 登录 才可以下载或查看,没有帐号?注册
x
Cr12钢冷冲模锻造工艺的优化0 E$ U: o) R8 w
摘要:分析了Cr12钢冷冲模在工作过程中产生裂纹的原因,提出了优化锻造方法、防止裂纹产生的工艺措施。 y) r5 N, z6 n: P, N" P
关键词:冷冲模;裂纹;锻造工艺;优化 - @! _( @1 y4 s, N& k/ n$ |
$ L+ T# \- `6 i" ~' M1 z$ G( m% Z4 Y一、概述
E' L3 C3 C ?5 B; x5 c2 t- k _" m' w4 L: ^/ D0 N% Y1 a0 w
Cr12钢是典型的冷作模具钢,广泛用于冷冲模、拉拔模、螺丝滚模等。 8 }+ h i" q/ j3 t/ z& C
) \( A6 M% L+ Z7 D% i湘潭市家用电器厂吊风扇转子硅钢片冲模采用Cr12钢制成。该模具主要由凸凹模组成,安装在600kN的冲压机床上,将材料为D21,厚度为0.5mm的硅钢片冲压成吊风扇转子片。 5 z9 w7 c& G! S4 v* }$ a: J3 ?
" F( u# q! K: t$ N+ s: b& C
该模具设计硬度为58~62HRC,实际测得的硬度为60~62HRC,符合设计要求,在正常情况下,模具可冲制20万件以上。然而该模具上机后使用不到9000次,便产生由冲头带出凹模槽孔边崩块,下机后将模具刃磨,再次上机,崩块继续产生,并且在模具外缘出现裂纹,在继续冲制过程中,裂纹迅速扩展,不到2万次就形成了图1所示形状的裂纹,使模具失效而无法使用。 - x/ z5 G1 y. i: l: P( q: n
二、冲模热处理与锻造生产工艺 * L: s6 l: k1 k. |
# C7 v% S5 ^( e& h- r0 B) w
1.热处理工艺 * M' [. y q6 z l5 T' r- r) R
' F* @" V* S5 s% h
退火时,加热至850~870℃保温4h后,随炉冷至730~740℃,保温4~5h后,随炉冷至500℃出炉空冷。淬火加热至980℃保温后油淬,随后在180℃回火3h。
$ J0 H/ ?: b6 D+ N& j! i* v; J( K3 G$ q" c- Q- j% O# L& e
2.锻造工艺 & {" @! B1 Y' W) z; `( M. m
( V% r$ l$ a7 E9 l% P. V% @) R锻造坯料选用φ120mm的轧材,在500kg的空气锤上进行,始锻温度为1050℃,终锻温度为820℃。 ) K. g5 ~* O9 Z: `) H+ {
! W5 H( p2 n% {, H+ }- A2 J5 B锻造生产时采用轴向镦拔法,即沿钢料的轴向,进行不变换方向的往复镦粗与拔长,其工艺过程如图2所示。 ; v4 f2 W$ H+ h3 P7 P
三、裂纹产生的机理分析 / X- s$ K1 ~2 C/ Y5 L$ s2 ^* C
# X7 F# b7 j4 l" }+ R( L: Z
在裂纹的前端、中部和末端取样进行金相显微分析(其显微组织分别见图3、图4、图5),发现材料显微组织不理想,粗细不匀的碳化物呈条带状分布。正是这种条带状分布的碳化物影响了材料的力学性能。首先条带状碳化物区是一个脆弱区,其强度很低,塑性韧性很差,不能承受大的冲击力,裂纹很容易从这里产生。其次裂纹一旦出现,又很容易沿着带状碳化物区扩展,因为该区脆性大,并且容易产生应力集中现象,所以这种带状碳化物区又是裂纹扩展的根源所在。这种裂纹的扩展是周期性的,当已产生的裂纹表面因滑移而变成疲劳裂纹时,裂纹的前端会变得重新尖锐,在下一次加载时又继续扩展。这样,不断加载、裂纹不断扩展,最后导致模具报废。 1 d5 e, q5 n: O+ a7 ~2 y7 Q9 s3 t
出现这种带状碳化物的原因是因为Cr12钢属莱氏体钢,碳含量高,钢中含有大量合金碳化物,经轧钢厂轧制后,碳化物即成带状分布,且轧制后的型材直径越大,碳化物就越粗,带状分布就越严重。显然在模具制造过程中,锻造工序对改善带状组织起着决定性的作用。而热处理的淬火是采用一次硬化法(即低温淬火加低温回火),在淬火加热温度下,大量碳化物不能溶于奥氏体,基本上保留了锻造后的分布特征。因此,热处理工艺无法消除带状组织。
4 {$ ~& {& g* o7 X/ |7 ^5 y% O ^& V6 S, _. |& J
分析锻造工艺可知:一是锻造设备吨位不够,二是锻造方法不合理。φ120mm直径的坯料,采用500kg的空气锤难以锻透,因为Cr12钢中含有大量的合金元素,变形温度高,变形抗力大,一般需选用相当于结构钢两倍吨位的锻锤来锻造。若锻锤吨位过小,打击力不够,变形只能发生在表面,中心部分的碳化物不能击碎。锻造方法采用轴向镦拔法,这种镦拔方式的主要缺点是端部开裂倾向大,在反复镦粗时,端面与砧面接触时间长,降温快,在拔长时易开裂(若此时产生的裂纹未发现,就有可能成为以后模具开裂的裂纹源),而心部金属变形量小,心部组织没有多大改善,因此,心部组织的碳化物在锻造过程中未能重新分布,仍保留着轧制时分布的状态,这是造成模具开裂的根本原因。
& c$ Q; S$ c$ Z" X3 q! c6 y% _
' J; D9 w& Z# }, a0 p" E四、锻造工艺的优化 6 a* E& A ? I+ G# E6 i4 L
`1 E; G$ J5 M6 X
1.选用合适的坯料直径和锻锤吨位 5 {" _/ T+ F4 i) e$ S# N( F6 E
* ^) g4 M8 i" X4 h; Q坯料直径越大,由于轧制时变形小,碳化物偏析越严重,碳化物颗粒也越粗大,因此将原来φ120mm的坯料改用φ80mm,以便得到原始碳化物分布较均匀的坯料。 . t+ d9 n9 t& ^9 a( F/ J
d' y" i1 n6 A9 K! X0 G* J9 c+ @原选用空气锤的吨位偏小,会使变形仅限于表面,内部碳化物得不到碎化,因此应适当加大空气锤吨位,可改用750kg空气锤,以便锻透,从而击碎中心碳化物。 " Q8 t) I% M; G; ?2 T& P
9 N# C, W2 G7 T! Q$ t2 v9 ~0 [2.采用多向镦拔法 : G. x: V& e9 `1 v0 c+ [' d
1 ?8 C8 q+ ]1 n# O; E* V多向镦拔法如图6所示,它是获得优质模具毛坯的一种较好的锻造方式,锻造变形均匀,易锻透,组织能得到全面改善,可使碳化物细碎且分布均匀,彻底消除了轧制时形成的带状组织。
]' W) x: h1 v: L* d/ _; T3.适当提高锻造比 1 T; E0 O- ]) @& T+ M/ [
L0 S8 i( D: s0 @" n4 V/ o
适当提高锻造比,可使碳化物不均匀度级别降低,采用多向镦拔法,其总的镦拔次数应在6~8次。总锻造比不少于15。
t9 K/ c5 r! |- u7 o, A
4 v6 e: V0 _" U! h# U) R4.避免锻造裂纹 * [* q, K' E u7 ?
/ t' t0 I' w" D) E4 u
锻打时不宜过重,以免锻造变形时产生锻造裂纹而形成裂纹源。要勤倒角,以避免温差和附加应力引起角裂。另外锻造时要仔细观察,如发现裂纹应及时铲除,以消除裂纹源。 |