|
发表于 2010-2-14 23:49:26
|
显示全部楼层
本帖最后由 ssmith 于 2010-2-14 23:50 编辑
( ~ x2 E* i6 k" L* _& Z, W% g1 \ ~0 f
控轧! g% ^) j; d+ k) \: A# W9 b
1 e/ ^3 f# ]' o5 R Z 即控制轧制。
' y4 l5 B% }! j
# O# g- }" |4 v: Y& G6 \ 也就是在调整钢的化学成分的基础上,通过控制加热温度,轧制温度,变形制度等工艺参数,控制奥氏体组织的变化规律和相变产物的组织形态,达到细化组织,提高强度和韧性的目的。
, R- ?& ^: H& g3 S/ t5 N3 d- v% Z+ i) t" N5 Y, X
控轧式正火就是控制轧制,控制轧制温度,压下量,冷却速度,以及终轧温度等措施,使钢板的性能达到良好的强韧性配比!. n+ v" c- q, D! c
5 ]6 ~3 [# C& Z& M, I1 b2 z# S 控制轧制是以细化晶粒为主,用以提高钢的强度和韧性的方法。控制轧制后奥氏体再结晶的过程,对获得细小晶粒组织起决定性作用。根据奥氏体发生塑性变形的条件(再结晶过程、非再结晶过程或γ-α转变的两相区变形),控制轧制可分为三种类型。
* J- d% l: z8 R8 G: @- k: J! ]; v4 v. s& z4 a9 H6 p' j, {5 T9 e
(一)再结晶型的控制轧制
$ `2 I+ q0 t/ c1 i5 l9 g, t$ T% E5 `
3 t" @& y9 B) a7 }" ]. ^* f1 o 它是将钢加热到奥氏体化温度,然后进行塑性变形,在每道次的变形过程中或者在两道次之间发生动态或静态再结晶,并完成其再结晶过程。经过反复轧制和再结晶,使奥氏体晶粒细化,这为相变后生成细小的铁素体晶粒提供了先决条件。为了防止再结晶后奥氏体晶粒长大,要严格控制接近于终轧几道的压下量、轧制温度和轧制的间隙时间。终轧道次要在接近相变点的温度下进行。为防止相变前的奥氏体晶粒和相变后的铁素体晶粒长大,特别需要控制轧后冷却速度。这种控制轧制适用于低碳优质钢和普通碳素钢及低合金高强度钢。4 V4 `, l$ D8 ?: m1 _
! l- L$ B( C0 R' L Q y, S* F
(二)未再结晶型控制轧制
$ S f" {, I" n* N/ E
8 E) P- C) M; W$ L6 h 它是钢加热到奥氏体化温度后,在奥氏体再结晶温度以下发生塑性变形,奥氏体变形后不发生再结晶(即不发生动态或静态再结晶)。因此,变形的奥氏体晶粒被拉长,晶粒内有大量变形带,相变过程中形核点多,相变后铁素体晶粒细化,对提高钢材的强度和韧性有重要作用。这种控制工艺适用于含有微量合金元素的低碳钢,如含铌、钛、钒的低碳钢。6 p! ^9 c. Y2 c, { ?) u8 x; m
* ~( K" t4 e3 r$ v+ S$ Q" x" ]
(三)两相区控制轧制2 K: g2 u( v1 }9 N/ C
0 y& l7 F1 V7 e9 w
它是加热到奥氏体化温度后,经过一定变形,然后冷却到奥氏体加铁素体两相区再继续进行塑性变形,并在Ar1温度以上结束轧制。实验表明:在两相区轧制过程中,可以发生铁素体的动态再结晶;当变形量中等时,铁素体只有中等回复而引起再结晶;当变形量较小时(15% -30%),回复程度减小。在两相区的高温区,铁素体易发生再结晶;在两相区的低温区只发生回复。经轧制的奥氏体相转变成细小的铁素体和珠光体。由于碳在两相区的奥氏体中富集,碳以细小的碳化物析出。因此,在两相区中只要温度、压下量选择适当,就可以得到细小的铁素体和珠光体混合物,从而提高钢材的强度和韧性。
E( w+ B" q+ w- X; _) A
3 d& `/ x) p7 Y 在实际轧制中,由于钢种、使用要求、设备能力等各不相同,各种控制轧制可以单独应用,也可以把两种或三种控制工艺配合在一起使用。 |
评分
-
查看全部评分
|